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Abstract

The dynamic behaviour of two-dimensional flexible slender structure–water interaction systems subject to a Sommerfeld

radiation condition at the infinity boundary of the water domain is investigated. A new parameter, the speed of radiation

wave, is introduced into the Sommerfeld radiation condition to consider the influences of both of the pressure wave and the

free surface wave of the water, which is an extension of the original Sommerfeld condition. The governing equations

describing the dynamic behaviour of the system are analysed and solved using a separation of variables method. It is

demonstrated that the natural vibration of the two-dimensional slender structure–water interaction system subject to a

Sommerfeld radiation condition is governed by a complex eigenvalue equation which has only pairs of complex conjugate

eigenvalues. The number of the pairs of complex conjugate natural frequencies equals the number of the natural modes of

the corresponding dry structure and is independent of the continuous fluid domain, which has infinite degrees of freedom.

The examples, including four cases of shallow water, deep water, no free surface wave and incompressible water,

demonstrate and illustrate the developed theoretical and numerical method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Sommerfeld’s original proof [1] of the uniqueness theorem of the radiation solution j ¼ fe�iot of the wave
equation defined in a full infinite three-dimensional space assumed an additional condition

lim
r!1

r
qf
qr
� ikf

� �
¼ 0; k ¼ o=c. (1)

Here, the quantity r stands for the distance from any fixed point r ¼ 0, i ¼
ffiffiffiffiffiffiffi
�1
p

, k represents the ratio of
the circular frequency o of the stimulation and c denotes the speed of wave in a full infinite three-dimensional
space. This condition is called the general condition of radiation [2]. The fact that this condition is superfluous
has been rigorously proven by Rellich [3] even for the case of an arbitrary number of dimensions h where the
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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radiation condition reads [4]

lim
r!1

rðh�1Þ=2
qf
qr
� ikf

� �
¼ 0. (2)

The Sommerfeld condition has been widely adopted to investigate wave radiation problems, for example,
see, Refs. [5–7]. Moreover, Filippi [8] used a Fourier transformation method to derive the dynamic response of
a one-dimensional vibro-acoustic system excited by an external force and subjected to the imposed
Sommerfeld radiation condition at infinity.

It is well known (see, for example, Refs. [4,9]) that the natural vibration of a dynamic system is defined by an
eigenvalue problem of the corresponding idealised system with no material damping assumed and external
forces. From the defined eigenvalue problem, the real natural frequencies and modes of the system are
theoretically derived or numerically calculated using finite element methods [10,11]. For example, Morand and
Ohayon [12] presented some detailed methods for numerical modelling of linear natural vibration analysis of
elastic structures coupled to internal fluids. Xing and Price [13] and Xing et al. [14] proposed a mixed finite
element substructure-subdomain method to simulate natural vibrations and dynamic responses of various
linear fluid–structure interaction problems.

Following the definition of the natural vibration of a system, Xing et al. [15] investigated the natural
vibrations of a beam–water interaction system subject to a non-disturbance condition at infinity boundary of
the water. Zhao et al. [16] further studied this beam–water interaction system with a concentrated mass and
moment of inertia added at the top of beam. In these two papers, more publications involving beam–water
interactions are cited and therefore a repeating review is omitted in this paper. However, we may ask two
questions: what are the natural dynamic characteristics of a beam–water interaction system subject to a
Sommerfeld radiation condition at an infinity boundary? What is a suitable radiation condition for the system
involving both of the free surface wave on the free surface boundary of the water and the pressure wave in the
water domain? The general solution of these problems has not been reported, although Xing [17] presented
limited simple examples to draw some fundamental concepts of the problem and Zhao [18] numerically
calculated a beam–water system involving the Sommerfeld radiation condition using the method reported in
Ref. [15]. This paper continues these researches to address this fundamental problem by investigating a
two-dimensional slender structure (or beamlike structure)–water interaction system using a theoretical
analysis in association with the validations by examples.

Before starting our discussion, it may be useful for readers to note that the system studied in this paper is a
natural vibration system to which there are no external/internal forces or vibration/wave sources applied and
also no material damping in the structure and the water. This is different from aforementioned publications
which studied various radiation problems in which at least one vibration/wave source exists.

2. Governing equations

Fig. 1 illustrates a two-dimensional flexible slender structure–water interacting system in which a
concentrated mass m0 with moment I0 of inertia is attached to the free end of the slender structure coupled to a
water domain 0pxpN, 0pyph. The slender structure width F is assumed negligibly small compared to the
infinite fluid domain and the length of the structure. Here, o�xy represents a two-dimensional Cartesian
coordinate system with its origin o located at the intersection of the central line of the slender structure and the
horizontal floor of the reservoir. We consider that the water of mass density rf is compressible, inviscid and its
motion irrotational. The flexible uniform slender structure is of bending stiffness EJ, mass density rs and
thickness B ¼ 1 in the o�z direction perpendicular to the o�xy plane.

For engineering applications and further research considerations intended by interested readers, it is
necessary to explain the details of this system. The system may be considered as a model of a dam–water
interaction system in which the dam with its top mass and water domain are assumed to be infinitely long in
the o�z direction. Therefore the strain of the dam in o�z direction vanishes which constructs a classical plane
strain problem from which we assume that the water motion has the same pattern in all planes parallel to
the o�xy plane to match the dam deformation. As a result of this, the system can be analysed using a
two-dimensional sheet of the dam and the water of thickness B ¼ 1. Further more, as normally used in
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Fig. 1. A two-dimensional slender structure–water interaction system subject to a Sommerfeld radiation condition at infinite boundary

x-N.
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engineering, the height H of the dam is significantly larger than its width F and thickness B, so that the sheet of
the dam is considered as a slender structure and the classical beam theory is valid to describe the deformation
of this sheet of the dam that implies that only a deflection in o�x direction is considered as a variable in the
analysis of the deformation of the dam sheet.

Under the assumption of small disturbances, the linearised equations describing the dynamic pressure
p(x, y, t) in the water, the horizontal deflection u(y, t), 0pypH, of the slender structure are as follows.
2.1. Governing equations

2.1.1. Fluid domain

Dynamic equation:

q2p=qx2 þ q2p=qy2 ¼ ð1=c2Þq2p=qt2; 0oxo1; 0oyoh, (3)

where c denotes the speed of sound in the water.
Boundary conditions:
On the free surface, a free surface wave is considered

qp=qy ¼ �ð1=gÞq2p=qt2; y ¼ h, (4)

where g represents the acceleration due to gravity.
On the bottom of the reservoir, assumed impermeable and rigid,

qp=qy ¼ 0; y ¼ 0. (5)

At infinity in the water domain, it is assumed that a radiation condition in x-direction applies, i.e.

lim
x!1
ðqp=qx� ikpÞ ¼ 0, (6)

where a parameter k, which is different from the notation k used in Eqs. (1) and (2), is introduced. In this
paper, we consider only the natural vibration solutions of the system. Therefore the pressure in the water has
the form pðx; y; tÞ ¼ Pðx; yÞe�iot so that we can write Eq. (6) in an equivalent form

lim
x!1

qp=qxþ
1

u
qp=qt

� �
¼ 0, (7)

where u ¼ o/k is introduced as a real speed of the radiation wave to consider the influences of the boundary
conditions of the problem. This speed of the radiation wave will equal the speed c of sound in a full infinite
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three, two or one-dimensional space where only the pressure wave is considered but no free surface waves
involved as investigated by Sommerfeld [1,2].

2.1.2. Solid domain

Dynamic equation:

EJðq4u=qy4Þ þ rsFBðq2u=qt2Þ ¼ �bðyÞpð0; y; tÞB; 0oyoH, (8)

bðyÞ ¼
1; 0pyph;

0; hoypH:

(
(9)

Boundary conditions:
At the base of the structure, assumed to be fixed,

u ¼ 0; qu=qy ¼ 0; y ¼ 0. (10)

At the free end, considering the concentrated mass m0 with moment I0 of inertia, we derive the following
boundary conditions:

EJðq2u=qy2Þ ¼ �I0½q
3u=ðqt2qyÞ�; EJðq3u=qy3Þ ¼ m0 q

2u=qt2; y ¼ H. (11)

2.1.3. Fluid– structure interaction interface

On the fluid–structure interaction interface, we assume an impermeable and motion consistent boundary
condition, which implies that the fluid cannot flow into the structure and has the same displacement, velocity
and acceleration in o�x direction as on the wet interface of the structure. Therefore, the pressure p in the water
and the horizontal displacement u of the wet structure section satisfy Eq. (8) and the relation [15]

qp=qx ¼ �rf ðq
2u=qt2Þ; x ¼ 0; 0oyoh. (12)

2.2. Variable separable forms of governing equations

By using the separation of variables method (see, for example, Ref. [4]), solutions of the pressure p,
displacement u for natural vibrations of the system are sought in the forms

pðx; y; tÞ ¼ Pðx; yÞTðtÞ ¼ X ðxÞY ðyÞTðtÞ ¼ X ðxÞY ðyÞe�iot, (13)

uðy; tÞ ¼ UðyÞTðtÞ ¼ UðyÞe�iot, (14)

where o denotes the square root of an eigenvalue of the system or a natural frequency of the system.
The substitution of these expressions into Eqs. (3)–(12) allows separation of variables and the following sets

of equations are obtained.
Spatial y-function Y(y):

Y 00 þ l2Y ¼ 0; Y 0ð0Þ ¼ 0; Y 0ðhÞ ¼ �o2Y ðhÞ=g. (15)

Spatial x-function X(x):

X 00 þ k2X ¼ 0; 0oxo1; X 0ð1Þ � ikX ð1Þ ¼ 0. (16)

Displacement function U(y):

EJU ð4Þ � rsFBo2U ¼ �Pðx; yÞbðyÞB ¼ �X ð0ÞY ðyÞbðyÞB; 0oyoH, (17)

U1ð0Þ ¼ 0; U 01ð0Þ ¼ 0, (18)

EJU 000ðHÞ ¼ o2I0U
0ðHÞ; EJU 000ðHÞ ¼ �o2m0UðHÞ, (19)
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Fluid–solid interaction condition:

ðqP=qxÞð0; yÞ ¼ X 0ð0ÞY ðyÞ ¼ rf o
2UðyÞ; 0oyoh. (20)

Here an apostrophe implies a spatial differentiation and the parameters l2 and k2 satisfy the relation

l2 þ k2
¼ o2=c2. (21)

3. Eigenvalue equations

The function Y satisfying Eq. (15) takes the form [15]

Y nðyÞ ¼ cosðlnyÞ; n ¼ 1; 2; 3 . . . (22)

where ln are the solutions of equation

ln tanðlnhÞ ¼ �
o2

g
. (23)

As described in Ref. [15], for a natural frequency o, there exist a series of solutions, identified by subscript n,
of Eq. (23), which should be considered in the following derivation.The functions Yn(y) satisfy the following
orthogonal relationship:

Z h

0

Y mY n dy ¼

0; man;
2lnhþ sinð2lnhÞ

4ln

; m ¼ n;

8<
: (24)

and for a natural frequency o, the solutions of Eq. (23) and the corresponding parameters kn must satisfy
Eq. (21), i.e.

o2

c2
¼ k2

n þ l2n; n ¼ 1; 2; 3; . . . (25)

The function Xn satisfying Eq. (16) takes the form

X nðxÞ ¼ eiknx. (26)

The pressure in the fluid is now expressed as a summation in the form

p ¼ Pðx; yÞe�iot ¼
X

n¼1;2;...

Pne
iknx cosðlnyÞe�iot, (27)

where Pn are constants to be determined.
For a more general discussion of the proposed solution, the following non-dimensional parameters are

defined:

x ¼ y=H; n ¼ h=H; g ¼ rf =rs; ō ¼ o=ob; c̄ ¼ c=ðobHÞ; k̄ ¼ kH,

l̄ ¼ lH; l̄
2
þ k̄

2
¼ ō2=c̄2; rm ¼ m0=ðrsFHBÞ; rI ¼ I0=ðm0H

2Þ. ð28Þ

Here ob ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=ðrsFBH4Þ

q
represents the frequency parameter of the dry structure. The variable x denotes

a non-dimensional coordinate in y direction and n defines the ratio of water depth to structure length;
g represents the ratio of the mass density of water to the one of the structure and ō denotes the non-
dimensional frequency.

Substituting Eqs. (27) and (28) into Eqs. (17)–(20), we derive

Ū
ð4Þ
ðxÞ � ō2ŪðxÞ ¼ �bðxÞ

X
n¼1;2;3;...

P̄n cosðl̄nxÞ; 0oxo1, (29)
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bðxÞ ¼
1; 0pxpn;

0; noxp1:

(
(30)

ō2ŪðxÞ ¼
X

n¼1;2;3;...

iðk̄n=gÞP̄n cosðl̄nxÞ; 0oxon, (31)

Ūð0Þ ¼ 0 ¼ Ū
0
ð0Þ; Ū

00
ð1Þ ¼ ō2Ī0Ū

0
ð1Þ; Ū

000
ð1Þ ¼ �ō2m̄0Ūð1Þ. (32)

Here P̄n ¼ Pn=½EJ=ðFBH2Þ�, Ī0 ¼ o2
bI0H=ðEJÞ and m̄0 ¼ o2

bm0H
3=ðEJÞ are non-dimensional parameters.

The corresponding non-dimensional forms of Eqs. (23) and (24) are

l̄n tanðl̄nnÞ ¼ �
ō2

ḡ
; ḡ ¼ g=ðHo2

bÞ,

Z n

0

Ȳ mðxÞȲ nðxÞdx ¼

0; man;

n
2
þ

sinð2l̄nnÞ
4l̄n

¼ Ln; m ¼ n:

8><
>: ð33Þ

Since the natural modes of the dry structure are a set of orthogonal and complete base vectors forming a
mode space to represent any motions of the structure [4], therefore, in using the mode summation method
based on the natural modes of the dry structure, the solution ŪðxÞ is expressed in the form

ŪðxÞ ¼ UQ; U ¼ ½f1ðxÞ f2ðxÞ � � � fNðxÞ �; QT ¼ ½Q1 Q2 � � � Q2� , (34)

where U denotes a line vector consisting of the N retained non-dimensional dry modes fJðxÞ (J ¼ 1, 2,
3,y,N), of the structure and Q represents a column vector of generalised coordinates. The dry modes of the
structure satisfy the boundary conditions (32) and the following orthogonal relations:Z 1

0

fI ðxÞfJðxÞdxþ fI ð1Þm̄0fJ ð1Þ þ f0I ð1ÞĪ0f
0
Jð1Þ ¼

1; I ¼ J;

0; IaJ;

(
(35)

and Z 1

0

f00I ðxÞf
00
JðxÞdx ¼

O2
I ; I ¼ J;

0; IaJ:

(
(36)

Here, OI represents the Ith non-dimensional natural frequency of the dry structure. Substituting Eq. (34)
into Eq. (29), and then pre-multiplying by UT, integrating the resultant equation with respect to x from 0 to 1
and using Eqs. (35) and (36), we obtain a matrix equation

diagðO2
I � ō2ÞQþW P̄ ¼ 0, (37)

where

P̄
T
¼ ½ P̄1 P̄2 � � � P̄M � . (38)

Here we assume that the M successive solutions l̄n (n ¼ 1, 2, 3,y, M), of Eq. (33) are retained and therefore
W is a N�M matrix of which a representative element

CIJ ¼

Z n

0

fI ðxÞ cosðl̄JxÞdx. (39)

Pre-multiplying Eq. (31) by ½ cosðl̄1xÞ cosðl̄2xÞ � � � cosðl̄MxÞ �T, and then integrating with respect to x
from 0 to n and using Eq. (33), we obtain another matrix form

WTQ�
i

ō2g
diagðLnk̄nÞP̄ ¼ 0. (40)
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Combining Eqs. (37) and (40), we have the following matrix equation:

diagðO2
I � ō2Þ W

ō2WT
�ði=gÞdiagðLnk̄nÞ

" #
Q

P̄

� �
¼ 0. (41)

The necessary and sufficient condition for Eq. (41) to have a non-trivial solution is that its determinant of
the coefficient matrix vanishes, i.e.

diagðO2
I � ō2Þ W

ō2WT
�ði=gÞdiagðLnk̄nÞ

�����
����� ¼ ō2N

diagðO2
I=ō

2 � IN�NÞ W

WT
�ði=gÞdiagðLnk̄nÞ

�����
����� ¼ 0. (42)

Eq. (42) gives the characteristic equation of the structure–water interaction system. From this equation,
the natural frequency ō can be determined and then the corresponding natural mode is derived from Eqs. (41)
and (34).

To find a solution of Eq. (42), a numerical iteration process is necessary. The calculation process is as
follows:
(i)
 Determine the region of each natural frequency of the system according to the natural frequencies of the
dry structure and the solution characteristics described in Section 4.
(ii)
 Starting from a trial solution ~̄o, we can find the corresponding parameters l̄n, Ln, k̄n and CIJ by solving
Eq. (33) and using Eqs. (28) and (37)–(39).
(iii)
 Solve Eq. (42) to find an approximate solution ō.� ��

(iv)
 Check if a convergence condition of ō� ~̄o� � jōjp� is reached. Here e is a small error allowed. If the

convergence is not reached, return to (ii) using the obtained approximate solution ō as a new starting
value of the solution.
A similar numerical iteration process has been used and demonstrated in our previous publications
for the beam–water interaction analysis [15,16,18]. This paper does not intend to provide a detailed
numerical process but to highlight an analysis of the new characteristics of the natural vibrations of the system
caused by the Sommerfeld radiation condition. To validate the analysis using examples, four cases will be
studied.

4. Analysis of solution characteristics

Here, we analyse the characteristics of the natural frequencies of the structure–water interaction system
subject to the Sommerfeld radiation condition.

4.1. A complex identity

Since the governing equations of the problem are a set of equations with only real coefficients, if a
solution consisting of displacement u, pressure p and natural frequency o satisfies Eqs. (3)–(12), the solution
consisting of the conjugate functions u*, p* and o* of this solution must also be a solution of the conjugate
equations [4]. Therefore, the conjugate functions of the solutions given in Eqs. (13) and (14) are a set of
functions:

p�ðx; y; tÞ ¼ P�ðx; yÞT�ðtÞ ¼ X �ðxÞY �ðyÞeio
�t,

u�1ðy; tÞ ¼ U�1ðyÞe
io�t; u�2ðy; tÞ ¼ U�2ðyÞe

io�t, ð43Þ

providing a conjugate solution of the conjugate equations of Eqs. (3)–(12). Using the same method to derive
the orthogonal relation of the natural vibration forms of the structure–water interaction system subject to an
undisturbed condition at the infinite boundary x-N of the water [15], we obtain a complex relation for the
two sets of solutions, identified by subscripts m and n, of the structure–water interaction system studied
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herein as follows:

ðo�m � onÞ ð1=c2Þ

Z
Of

PnP�m dOþ EJrf

Z h

0

U 001nU�1m
00 dyþ

Z h

0

U 002nU�2m
00 dy

� �
þ ð1=gÞ

Z 1
0

Pnðx; hÞP
�
mðx; hÞdx

( )

¼ ið1=uÞ lim
x!1

Z h

0

Pnðx; yÞP
�
mðx; yÞdy. ð44Þ

This relation is used to analyse the characteristics of the natural vibrations of the structure–water
interaction system.

4.2. Characteristics of the solution

4.2.1. Complex natural frequency with a negative imaginary part

For a same natural mode, i.e. m ¼ n, Eq. (44) reduces to

ðo�n � onÞ ð1=c2Þ

Z
Of

jPnj
2 dOþ EJrf

Z h

0

U 001n

�� ��2 dyþ

Z h

0

U 002n

�� ��2 dy

� �
þ ð1=gÞ

Z 1
0

Pnðx; hÞ
�� ��2 dx

( )

¼ ið1=uÞ lim
x!1

Z h

0

Pnðx; yÞ
�� ��2 dy. ð45Þ

From this equation it follows that:
(i)
 the natural frequency of the system must be complex, otherwise, Eq. (45) does not hold since for a real
frequency o�n ¼ on the left side of Eq. (45) vanishes but its right side

R h

0 Pnðx; yÞ
�� ��240 required by the

radiation condition;

(ii)
 the natural frequency o has a negative imaginary part since o�n � on ¼ �i2ImðonÞ must be positive for

Eq. (45) to be valid.
This finding reveals that a natural vibration of the structure–water interaction system subject to the

Sommerfeld radiation condition behaves as a damped vibration with an energy dissipation process although
there is no material damping in both the fluid and the solid, which is a natural characteristic of the system and
does not depend on whether or not there exists any vibration source or force.

4.2.2. Number of the natural frequencies of the system is independent of the infinite water domain

It is observed that the highest power of ō2 in Eq. (42) is equal to the number of the retained dry modes of
the structure, i.e. N, which is independent of the infinite fluid. Therefore, the number of complex conjugate
natural frequencies of the system equals the number of degrees of freedom of the dry structure.

This finding implies that for the structure–water interaction system subject to a Sommerfeld radiation
condition at the infinite boundary of the water there are no extra numbers of natural vibrations except the
numbers of natural vibrations of the dry structure. This characteristic is much different from the one for the
beam–water interaction system subject to a non-disturbance boundary condition on the infinite boundary
of the water, of which the number of natural vibrations depends on both of the dry beam and the water
domain [15].

Based on this characteristic, it is sufficient to choose the natural modes of the dry structure and use a mode
summation method to calculate dynamic responses of the structure–water interaction system subject to a
Sommerfeld radiation condition since the natural modes of the dry structure constructs a complete orthogonal
space to describe any motions of the structure [4,9].

5. Case studies

To illustrate and to validate the developed method described previously, we investigate the following four
cases. These cases can avoid numerically complex iteration calculations but clearly reveal the physical
mechanisms of the system caused by the Sommerfeld radiation condition.
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5.1. Shallow water

We assume that the depth h of the water domain is very small, i.e. a shallow water case. For this case, we
have an approximation tanðl̄nnÞ � l̄nn � sinðl̄nnÞ from which Eq. (33) gives only the solution

l̄
2
¼ �

ō2

ḡn
; L ¼ n, (46)

which when substituted into Eq. (28) yields

ðc̄2 þ ḡnÞō2

c̄2ḡn
¼ ō2=ū2 ¼ k̄

2
; ū ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡn

1þ ḡn=c̄2

s
. (47)

For a further simplification, we assume that there is no concentrated mass m0 and moment I0 of inertia
at the end of the structure as well as retaining only the first natural mode f1(x) of the dry structure, which
gives

Ō ¼ 3:52; C1 ¼

Z n

0

f1ðxÞ cosðl̄xÞdx. (48)

As a result of this, Eq. (42) now takes the form

ðŌ2
=ō2 � 1Þ C1

C1 �ik̄n=g

�����
����� ¼ 0. (49)

The characteristic equation of the system is

^̄o
2
þ 2i ^̄oZ� 1 ¼ 0; ^̄o ¼ ō=Ō; Z ¼

gðC2
1=nÞ

2Ō
ū, (50)

which has a conjugate complex solution

^̄o ¼ �iZ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
. (51)

The corresponding mode shape or eigenvector is obtained from Eq. (41) (Q ¼ 1 for normalization):

Q ¼ 1; P ¼ �i ^̄oŌgðC1=nÞū. (52)

This example confirms the conclusions developed in Section 4. The parameter Z plays a role of damping
factor and the parameter ū represents the speed of radiation wave influenced by both the free surface and the
pressure waves. To further validate the theory developed in this paper, we discuss this solution as follows:
(i)
 No free surface waves: If free surface waves are not considered, the gravity acceleration tends to infinity, so
that the speed of radiation wave ū! c̄ and therefore k̄ ¼ k̄ ¼ ō=c̄ which is the case which considered only
the pressure wave studied by Sommerfeld [1,2].
(ii)
 Incompressible water: Assume that the water is incompressible and the speed c̄ of sound tends to infinity.
As result of this, the speed of radiation wave ū!

ffiffiffiffiffi
ḡn
p

and k̄ ¼ ō=
ffiffiffiffiffi
ḡn
p

, where only the free surface wave
is considered.
(iii)
 Damping factor: Eq. (50) shows that the damping factor of the system is proportional to the ratio g of mass
density, the speed ū of radiation as well as a coupling term C2=n; which is physically explained as follows:
(a) A large ratio g of mass density implies a large mass density of water and therefore a large mount of

energy is transmitted through the water to its infinite boundary and then dissipated, so that the
damping factor is larger.

(b) Increasing the speed of radiation ū implies that the energy faster dissipates from the radiation
boundary of the water, which causes a larger damping factor Z.

(c) The coupling term C2
1=n involves the integration in Eq. (48) which is influenced by the mode shape of

the dry structure and the mode shape of the water as well as the integration on the wet surface of the
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structure. As an estimation of the integration in Eq. (48), we have

C1 ¼

Z n

0

f1ðxÞ cosðl̄xÞdx ¼ f1ð
~xÞ cosðl̄~xÞn; C2

1=n ¼ f2
1ð
~xÞcos2ðl̄~xÞn, (53)

where ~x is a value between o and n. Therefore, a large depth n of water and the large integration value
of C1 represent more strong coupling between the structure and the water, so that more mechanical
energy of the structure transfers into the water and is then dissipated from the radiation boundary,
therefore the damping factor is larger.
5.2. Deep water

As a reverse case of the shallow water case studied in Section 5.1, here we consider the deep water case in
which the water depth tends to infinity. For convenience to estimate the values of the related functions, we
introduce a parameter i~ln ¼ l̄n, so that Eq. (33) now takes a form

~ln tanhð~lnnÞ ¼
ō2

ḡ
, (54)

which has only one solution of ~ln for a particular value ō as demonstrated by Xing et al. [15]. For this deep
water case, this solution reduces to

~l ¼
ō2

ḡ
, (55)

which when substituted into Eq. (28) yields

k̄
2
¼

ō4

ḡ2
þ

ō2

c̄2
¼

ō2

ū2
; ū ¼

ḡc̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ2 þ c̄2ō2

p . (56)

From Eqs. (33) and (38), it follows

L ¼
n
2
þ

sinhð2~lnÞ

4~l
; CI ¼

Z n

0

fI ðxÞ coshð~lxÞdx. (57)

We retain only the first natural mode of the dry structure, and therefore Eq. (42) reduces to

ðŌ2
=ō2 � 1Þ C1

C1 �ik̄L=g

�����
����� ¼ 0. (58)

The characteristic equation of the system is

^̄o
2
þ 2i ^̄oZ� 1 ¼ 0; ^̄o ¼ ō=Ō; Z ¼

gðC2=LÞ
2Ō

ū, (59)

which has a conjugate complex solution and the corresponding natural mode as follows:

^̄o ¼ �iZ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
, (60)

Q ¼ 1; P ¼ �i ^̄oŌgðC1=LÞū. (61)

Compared with the case of the shallow water, the main differences are the different damping parameter Z
defined in Eq. (59) and the speed ū of radiation wave given by Eq. (56). As discussed for the shallow water case,
this speed of radiation wave reduces to the speed c̄ of the pressure wave if no free surface waves (ḡ!1) are
considered, but to ḡ=ō if incompressible water (c̄!1) is considered.
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5.3. No free surface wave considered

If no free surface wave is considered, the acceleration of gravity tends to infinity. As a result of this, Eq. (33)
gives

l̄0 ¼ 0; L0 ¼ n; l̄n ¼ np=n; Ln ¼ n=2; n ¼ 1; 2; 3; . . . (62)

which are real numbers and independent of the natural frequency ō of the system. From Eq. (28), the
corresponding parameters k̄n is obtained as

k̄
2

n ¼ ō2=c̄2 � l̄
2

n; n ¼ 0; 1; 2; 3 . . . (63)

As an approximation, we choose only the first natural mode f1(x) of frequency Ō ¼ 3:52 of the dry structure
and consider the following two cases.

5.3.1. Considering only Ȳ 0 ¼ cosðl̄0xÞ ¼ 1
In this case, we have

C10 ¼

Z n

0

f1ðxÞ cosðl̄0xÞdx ¼
Z n

0

f1ðxÞdx; k̄
2

0 ¼ ō2=c̄2; L0 ¼ n. (64)

Eq. (42) now takes the form

ðŌ2
=ō2 � 1Þ C10

C10 �ik̄0L0=g

�����
����� ¼ 0, (65)

which gives an equation same as Eq. (50) except the damping factor now takes the form

Z ¼
gðC2

10=nÞ
2Ō

c̄, (66)

in which the speed of radiation wave ū ¼ c̄ since no free surface waves are considered.

5.3.2. Considering Ȳ 0 ¼ cosðl̄0xÞ ¼ 1 and Ȳ 1 ¼ cosðl̄1xÞ
For this case, we have

C10 ¼

Z n

0

f1ðxÞdx; C11 ¼

Z n

0

f1ðxÞ cosðl̄1xÞdx; L0 ¼ n; L1 ¼ n=2,

k̄
2

0 ¼ ō2=c̄2; k̄
2

1 ¼ ō2=c̄2 � p2=n2 ¼ ðō2=c̄2Þ 1�
pc̄

ōn

� �2
" #

, ð67Þ

and Eq. (42) now takes the form

Ō
2
=ō2 � 1 C10 C11

C10 �ik̄0L0=g 0

C11 0 �ik̄1L1=g

��������

��������
¼ 0. (68)

which also gives an equation with the same structure as Eq. (50), that is,

^̄o
2
þ 2i ^̄oZ� 1 ¼ 0; ^̄o ¼ ō=Ō; Z ¼

gðC2=nÞm
2Ō

c̄; m ¼ 1þ
C2

11=ðk̄1L1Þ

C2
10=ðk̄0L0Þ

( )
. (69)

in which a new parameter m is introduced. This introduced parameter provides the influence of the second
mode added. Actually, the parameter m involves the natural frequency ō to be determined. Since the ratio

k̄1=k̄0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

p2

n2

� �	
ō2

c̄2

� �s
, (70)
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the parameter m involves ō�1 which does not increase the power of the natural frequency ō of Eq. (68).
Therefore, although the two fluid pressure functions Ȳ 0 ¼ cosðl̄0xÞ ¼ 1 and Ȳ 1 ¼ cosðl̄1xÞ are considered, we
can obtain only one conjugate complex frequency due to only one degree of freedom of the structure is
considered.

5.4. Incompressible water

For the case of incompressible water, the speed of sound in the water tends to infinity, which when
substituted into Eq. (25) yields a non-dimensional relation

k̄
2

n þ l̄
2

n ¼ 0; n ¼ 1; 2; 3; . . . (71)

and therefore we have

k̄n ¼
~ln; n ¼ 1; 2; 3; . . . (72)

where l̄n ¼ i~ln and Eq. (64) are introduced as used for the case of deep water. As mentioned in Section 5.2, Eq.
(54) has only one solution for a particular value of ō. We represent this solution in the form

~l ¼
ō
ū
, (73)

where ū is a speed of radiation wave introduced by us, which depends on the solution of Eq. (54) for a given

problem. The corresponding function Ȳ ¼ coshð~lxÞ and the related integrations are the same as given by

Eq. (57) except now the solution ~l is defined by Eq. (73).
We still consider the first natural mode of the dry structure, and therefore Eq. (42) yields the same form of

the results as the ones given by Eqs. (58)–(61) except different definitions described herein, such as Eq. (73).
We neglect these formulations and discussions.

6. Conclusions

The two-dimensional slender structure–water interaction system subject to a Sommerfeld radiation
condition at infinity boundary of the water is investigated in this paper. The governing equations describing
the structure–water interaction system are derived. To reveal the influences of the pressure wave in the water
domain and the free surface wave on the speed of radiation wave at the infinity boundary where a Sommerfeld
condition is imposed, a speed of radiation wave is introduced which is an extension of the original Sommerfeld
condition. This new introduced speed of radiation wave reduces to the speed of the pressure wave if the free
surface wave is not considered, but to the speed of the free surface wave if the water is considered as
incompressible. The numerical formulations and the solution approach are developed. The theoretical analysis
on the characteristics of the natural vibrations of the system is presented. Four selected case studies of the
shallow water, deep water, no free surface wave and incompressible water are solved as examples to illustrate
and to validate the theoretical analysis and solution method. The theoretical demonstrations and the examples
confirm the following conclusions:
(i)
 The natural vibration of a two-dimensional slender structure–water interaction system subject to a
Sommerfeld radiation condition at the infinity boundary of the water behaves as free damped vibration
although there is no material damping in either solid or fluid. The damping is caused by the Sommerfeld
radiation condition at infinite boundary where the energy of the system transmits from inside to outside.
(ii)
 The natural vibrations of the structure–water interaction system studied herein are governed by a complex
eigenvalue problem which only has complex conjugate eigenvalues. The number of complex conjugate
eigenvalues of the system equals the number of degrees of freedom of the dry structure in the system but
remains independent of the fluid domain where the Sommerfeld condition is imposed.
(iii)
 For the dynamic response analysis of the structure–water interaction system subject to a Sommerfeld
radiation condition, the natural modes of the dry structure are sufficient to construct a mode space to
investigate any motions of the structure in the system since the number of the natural modes of the
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structure–water system subject to a Sommerfeld condition is independent of the infinite water domain. It
is not necessary to find the wet modes for the dynamic response analysis of the system studied in this
paper.
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